Transformation formulae of the solutions of the two-dimensional Toda lattice

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys. A: Math. Gen. 224737
(http://iopscience.iop.org/0305-4470/22/21/035)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 07:05

Please note that terms and conditions apply.

ADDENDUM

Transformation formulae of the solutions of the two-dimensional Toda lattice

Qi-Ming Liu
Department of Mathematics, Shanghai University of Science and Technology, Shanghai, People's Republic of China

Received 26 April 1989

Abstract

Two transformation formulae of the solutions of the two-dimensional Toda lattice are presented. The first formula, which can be obtained by the Zakharov-Shabat dressing method, is proved by applying the Hirota bilinear transformation method and gives the basis for the second new formula.

In the development of soliton theory, various exact methods have been found for solving non-linear evolution equations. Among them, the bilinear transformation method [1], initiated by Hirota, is a powerful tool. In the bilinear formalism, a given non-linear equation is first transformed into a bilinear form through a dependent variable transformation. Then the multi-soliton solutions, the Bäcklund transformations and an infinite number of conservation laws of this bilinear equation can be derived in a systematic way.

Recently Freeman and Nimmo [2,3], Hirota [4, 5], Matsuno [6, 7], Nakamura [8, 9], Sachs [10], Yuasa [11] and the author [12, 13] have found that in the bilinear formalism the multi-soliton solutions, the rational solutions and the non-linear superposition formulae can be proved by purely algebraic procedures and the knowledge of the inverse scattering transform method is not required.

The main purpose of this addendum is to present the direct proof of a transformation formula which can be obtained by the Zakharov-Shabat dressing method [14]. Then a new generalisation is derived by making use of this result.

We have the two-dimensional Toda lattice in bilinear form:

$$
\begin{equation*}
f_{n}\left(\partial_{x} \partial_{s} f_{n}\right)-\left(\partial_{x} f_{n}\right)\left(\partial_{s} f_{n}\right)-f_{n+1} f_{n-1}+f_{n}^{2}=0 \tag{1.1}
\end{equation*}
$$

and its Bäcklund transformation:

$$
\begin{align*}
& \partial_{x} \tilde{f}_{n}=\frac{g_{n}}{g_{n+1}} \tilde{f}_{n+1}+\frac{\partial_{x} g_{n+1}}{g_{n+1}} \tilde{f}_{n} \\
& \partial_{s} \tilde{f}_{n}=-\frac{g_{n+1}}{g_{n}} \tilde{f}_{n-1}+\frac{\partial_{s} g_{n}}{g_{n}} \tilde{f}_{n} . \tag{1.2}
\end{align*}
$$

Since (1.1) is invariant under the variable transformations $x \rightarrow-x, s \rightarrow-s, m \rightarrow 2 n-m$, we can get another Bäcklund transformation of (1.1)

$$
\begin{align*}
& \partial_{x} \bar{f}_{n}=-\frac{g_{n}}{g_{n-1}} \bar{f}_{n-1}+\frac{\partial_{x} g_{n-1}}{g_{n-1}} \bar{f}_{n} \\
& \partial_{s} \bar{f}_{n}=\frac{g_{n-1}}{g_{n}} \bar{f}_{n+1}+\frac{\partial_{s} g_{n}}{g_{n}} \bar{f}_{n} . \tag{1.3}
\end{align*}
$$

Theorem 1. If g_{n} satisfies the two-dimensional Toda lattice (1.1), $\tilde{f}_{n}^{i}(1 \leqslant i \leqslant N)$ satisfy (1.2) and $\bar{f}_{n}^{i}(1 \leqslant i \leqslant N)$ satisfy (1.3), then $f_{n}=g_{n+1}$ det H also satisfies (1.1), where

$$
(H)_{i j}=h_{i j}(n)=c_{i j}+\sum_{m=-x}^{n} \frac{\tilde{f}_{m}^{\prime} \bar{f}_{m+1}^{i}}{g_{m} g_{m+1}} \quad 1 \leqslant i, j \leqslant N .
$$

Proof. For simplicity, we introduce new dependent variables $\varphi_{n}^{i}, \bar{\varphi}_{n}^{\prime}(1 \leqslant i \leqslant N)$ by $\varphi_{n}^{i}=\tilde{f}_{n}^{i} / g_{n+1}$ and $\bar{\varphi}_{n}^{i}=\bar{f}_{n+1}^{i} / g_{n}$, then we have

$$
\begin{array}{ll}
\partial_{x} \varphi_{n}^{i}=u_{n} \varphi_{n+1}^{\prime} & \partial_{5} \varphi_{n}^{\prime}=-\varphi_{n-1}^{\prime}+v_{n} \varphi_{n}^{i} \\
\partial_{x} \bar{\varphi}_{n}^{i}=-u_{n-1} \bar{\varphi}_{n-1}^{i} & \partial_{s} \bar{\varphi}_{n}^{i}=\bar{\varphi}_{n+1}^{\prime}-v_{n} \bar{\varphi}_{n}^{i} \tag{3}
\end{array}
$$

where

$$
u_{n}=\frac{g_{n} g_{n+2}}{g_{n+1}^{2}} \quad v_{n}=\frac{\partial_{s} g_{n}}{g_{n}}-\frac{\partial_{s} g_{n+1}}{g_{n+1}}
$$

and

$$
(H)_{i j}=h_{i j}(n)=c_{i j}+\sum_{m=-x}^{n} \bar{\varphi}_{m}^{i} \varphi_{m}^{j} \quad 1 \leqslant i, j \leqslant N
$$

Using the ordinary matrix properties, we have

$$
\begin{align*}
f_{n+1} & =g_{n+2} \operatorname{det}\left(h_{i j}(n+1)\right) \\
& =g_{n+2} \operatorname{det}\left(h_{i j}(n)+\bar{\varphi}_{n+1}^{\prime} \varphi_{n+1}^{j}\right) \\
& =g_{n+2}\left(\operatorname{det} H+\sum_{k=1}^{\vee} \operatorname{det} A_{k}^{1}\right) \tag{4}
\end{align*}
$$

where

$$
\left(A_{k}^{1}\right)_{i k}= \begin{cases}h_{i j}(n) & i \neq k \tag{5a}\\ \bar{\varphi}_{n+1}^{i} \varphi_{n+1}^{j} & i=k .\end{cases}
$$

At the first stage of the above expression, instead of ($5 b$) we have a slightly different form $\left(A_{k}^{1}\right)_{i j}=h_{i j}(n+1)(k<i \leqslant N)$. Then in the $\operatorname{det} A_{k}^{1}$ we have added the k th row multiplied by the factor $-\bar{\varphi}_{n+1}^{i} / \bar{\varphi}_{n+1}^{k}$ to the i th row for $k<i \leqslant N$. This gives the expression of ($5 b$).

Furthermore, if we use the matrix identity

$$
\sum_{k=1}^{N} \operatorname{det} A_{k}=-\left|\begin{array}{ccccc}
a_{11} & a_{12} & \cdots & x_{1 N} & x_{1} \\
a_{21} & a_{22} & \cdots & a_{2 N} & x_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{N 1} & a_{N 2} & \cdots & a_{N N} & x_{N} \\
y_{1} & y_{2} & \cdots & y_{N} & 0
\end{array}\right|
$$

where

$$
\left(A_{k}\right)_{i j}= \begin{cases}a_{i j} & i \neq k \\ x_{i} y_{j} & i=k\end{cases}
$$

then (4) becomes

$$
f_{n+1}=g_{n+2}\left(\operatorname{det} H-\left|\begin{array}{ccc}
& & \bar{\varphi}_{n+1}^{N} \tag{6}\\
H & & \vdots \\
& \bar{\varphi}_{n+1}^{N} \\
\varphi_{n+1}^{1} \ldots \varphi_{n+1}^{N} & 0
\end{array}\right|\right)
$$

similarly, we have

$$
f_{n-1}=g_{n}\left(\operatorname{det} H+\sum_{k=1}^{N} \operatorname{det} A_{k}^{2}\right)
$$

where

$$
\left(A_{k}^{2}\right)_{i j}= \begin{cases}h_{i j}(n) & i \neq k \\ -\bar{\varphi}_{n}^{i} \varphi_{n}^{j} & i=k\end{cases}
$$

and

$$
f_{n-1}=g_{n}\left(\operatorname{det} H+\left\lvert\, \begin{array}{cc}
& \tag{7}\\
H & \bar{\varphi}_{n}^{1} \\
& \\
\bar{\varphi}_{n}^{N} \\
\varphi_{n}^{1} \ldots \varphi_{n}^{N} & 0
\end{array}\right.\right) .
$$

In order to calculate the quantities including differential operators, we see the operations of $\partial_{x}, \partial_{s}$ upon the matrix element $h_{i j}(n)$. We have

$$
\begin{aligned}
& \partial_{x} h_{i j}(n)=\sum_{m=-\infty}^{n}\left[\left(\partial_{x} \bar{\varphi}_{m}^{i}\right) \varphi_{m}^{j}+\bar{\varphi}_{m}^{i}\left(\partial_{x} \varphi_{m}^{j}\right)\right] \\
&=\sum_{m=-\infty}^{n}\left(-u_{m-1} \bar{\varphi}_{m-1}^{i} \varphi_{m}^{j}+u_{m} \bar{\varphi}_{m}^{i} \varphi_{m+1}^{j}\right) \\
&=u_{n} \bar{\varphi}_{n}^{i} \varphi_{n+1}^{j} \\
& \begin{aligned}
\partial_{s} h_{i j}(n) & =\sum_{m=-\infty}^{n}\left[\left(\partial_{s} \bar{\varphi}_{m}^{i}\right) \varphi_{m}^{j}+\bar{\varphi}_{m}^{i}\left(\partial_{s} \varphi_{m}^{j}\right)\right] \\
& =\sum_{m=-\infty}^{n}\left[\left(\bar{\varphi}_{m+1}^{i}-v_{m} \bar{\varphi}_{m}^{i}\right) \varphi_{m}^{j}-\bar{\varphi}_{m}^{i}\left(\varphi_{m-1}^{j}-v_{m} \varphi_{m}^{j}\right)\right] \\
& =\bar{\varphi}_{n+1}^{i} \varphi_{n}^{j} \\
\partial_{x} \partial_{s} h_{i j}(n) & =\left(\partial_{x} \bar{\varphi}_{n+1}^{i}\right) \varphi_{n}^{\prime}+\bar{\varphi}_{n+1}^{i}\left(\partial_{x} \varphi_{n}^{j}\right) \\
& =u_{n}\left(-\bar{\varphi}_{n}^{i} \varphi_{n}^{j}+\bar{\varphi}_{n+1}^{\prime} \varphi_{n+1}^{j}\right) .
\end{aligned}
\end{aligned}
$$

Now we calculate the quantities $\partial_{x} \operatorname{det} H, \partial_{s} \operatorname{det} H$ and $\partial_{x} \partial_{s} \operatorname{det} H$:

$$
\partial_{x} \operatorname{det} H=\sum_{k=1}^{N} \operatorname{det} A_{k}^{3}
$$

where

$$
\left(A_{k}^{3}\right)_{i j}= \begin{cases}h_{i j}(n) & i \neq k \\ \partial_{x} h_{i j}(n)=u_{n} \bar{\varphi}_{n}^{i} \varphi_{n+1}^{j} & i=k .\end{cases}
$$

Thus we have

$$
\begin{align*}
& \partial_{x} \operatorname{det} H=-u_{n}\left|\begin{array}{cc}
& \bar{\varphi}_{n}^{1} \\
H & \vdots \\
\varphi_{n+1}^{1} \cdots \varphi_{n+1}^{N} & 0
\end{array}\right| \tag{8}\\
& \partial_{s}^{N} \operatorname{det} H=\sum_{k=1}^{N} \operatorname{det} A_{k}^{4}
\end{align*}
$$

where

$$
\left(A_{k}^{4}\right)_{y j}= \begin{cases}h_{i j}(n) & i \neq k \\ \partial_{5} h_{i j}(n)=\bar{\varphi}_{n+1}^{i} \varphi_{n}^{j} & i=k\end{cases}
$$

Thus we have

$$
\begin{align*}
& \partial_{s} \operatorname{det} H=-\left|\begin{array}{cc}
& \bar{\varphi}_{n+1}^{1} \\
H & \vdots \\
& \bar{\varphi}_{n+1}^{N} \\
\varphi_{n}^{1} \cdots \varphi_{n}^{M} & 0
\end{array}\right| \tag{9}\\
& \partial_{x} \partial_{s} \operatorname{det} H=\sum_{k=1}^{N} \operatorname{det} A_{k}^{s}+\sum_{\substack{k, k^{\prime}=1 \\
k \neq k}}^{N} \operatorname{det} A_{k k^{\prime}} \tag{10}
\end{align*}
$$

where

$$
\begin{aligned}
& \left(A_{k}^{5}\right)_{i j}= \begin{cases}h_{i j}(n) & i \neq k \\
\partial_{x} \partial_{,} h_{i j}(n)=u_{n}\left(-\bar{\varphi}_{n}^{\prime} \varphi_{n}^{j}+\bar{\varphi}_{n+1}^{i} \varphi_{n+1}^{\prime}\right) & i=k\end{cases} \\
& \left(A_{k k}\right)_{i j}= \begin{cases}h_{i j}(n) & i \neq k, k^{\prime} \\
\partial_{x} h_{i j}(n)=u_{n} \bar{\varphi}_{n}^{i} \varphi_{n+1}^{j} & i=k \\
\partial_{s} h_{i j}(n)=\bar{\varphi}_{n+1}^{\prime} \varphi_{n}^{\prime} & i=k^{\prime} .\end{cases}
\end{aligned}
$$

Thus we have

$$
\begin{align*}
\sum_{k=1}^{N} \operatorname{det} A_{k}^{s}= & u_{n} \sum_{k=1}^{N}\left(\operatorname{det} A_{k}^{1}+\operatorname{det} A_{k}^{2}\right) \\
& =u_{n}\left(-\left|\begin{array}{cc}
\bar{\varphi}_{n+1}^{1} \\
H & \vdots \\
& \bar{\varphi}_{n+1}^{N} \\
\varphi_{n+1}^{1} \cdots \varphi_{n+1}^{N} & 0
\end{array}\right|+\left|\begin{array}{cc}
\bar{\varphi}_{n}^{1} \\
\vdots & \bar{\varphi}_{n}^{N} \\
\varphi_{n}^{1} \cdots \varphi_{n}^{N} & 0
\end{array}\right|\right) \tag{11}
\end{align*}
$$

Applying the Laplace expansion theorem, we can obtain

$$
\begin{aligned}
\operatorname{det} A_{k k^{\prime}}= & \sum_{\substack{l, l^{\prime}=1 \\
l<l^{\prime}}}^{N}(-1)^{k+k^{\prime}+l+l^{\prime}} \operatorname{sgn}\left(k^{\prime}-k\right)\left|\begin{array}{cc}
\left(A_{k k^{\prime}}\right)_{k l} & \left(A_{k k^{\prime}}\right)_{k l^{\prime}} \\
\left(A_{k k^{\prime}}\right)_{k^{\prime} \prime} & \left(A_{k k^{\prime}}\right)_{k^{\prime} l^{\prime}}
\end{array}\right| H\binom{k k^{\prime}}{l l^{\prime}} \\
& =u_{n} \sum_{\substack{l^{\prime}=1 \\
l<l^{\prime}}}^{N}(-1)^{k+k^{\prime}+l+l^{\prime}} \operatorname{sgn}\left(k^{\prime}-k\right) \bar{\varphi}_{n}^{k} \bar{\varphi}_{n+1}^{k}\left|\begin{array}{cc}
\varphi_{n+1}^{1} & \varphi_{n+1}^{\prime \prime} \\
\varphi_{n}^{\prime} & \varphi_{n}^{\prime \prime}
\end{array}\right| H\left(\begin{array}{cc}
k & k^{\prime} \\
l & l^{\prime}
\end{array}\right)
\end{aligned}
$$

where $H\left(\begin{array}{cc}k & k^{\prime} \\ 1 \\ l\end{array}\right)$ is the same as det H except the k th and k^{\prime} th rows and the l th and l^{\prime} th columns are deleted from it. Thus we have

$$
\begin{align*}
& \sum_{\substack{k, k^{\prime}=1 \\
k \neq k^{\prime}}}^{N} \operatorname{det} A_{k k^{\prime}}=\sum_{\substack{k, k^{\prime}=1 \\
k<k^{\prime}}}^{N}\left(\operatorname{det} A_{k k^{\prime}}+\operatorname{det} A_{k^{\prime} k}\right) \\
& =-u_{n} \sum_{\substack{k, k^{\prime}-1 \\
k<k^{\prime}}}^{N} \sum_{\substack{l, r^{\prime}=1 \\
l<l^{\prime}}}^{N}(-1)^{k+k^{\prime}+l+r}\left|\begin{array}{cc}
\bar{\varphi}_{n}^{k} & \bar{\varphi}_{n+1}^{k} \\
\bar{\varphi}_{n}^{k} & \bar{\varphi}_{n+1}^{k}
\end{array}\right|\left|\begin{array}{cc}
\varphi_{n}^{\prime} & \varphi_{n}^{\prime} \\
\varphi_{n+1}^{\prime} & \varphi_{n+1}^{\prime}
\end{array}\right| H\left(\begin{array}{cc}
k & k^{\prime} \\
l & l^{\prime}
\end{array}\right) \\
& =-u_{n}\left|\begin{array}{ccccc}
& & & \bar{\varphi}_{n}^{1} & \bar{\varphi}_{n+1}^{1} \\
& H & & \vdots & \vdots \\
& & & \bar{\varphi}_{n}^{N} & \bar{\varphi}_{n+1}^{N} \\
\varphi_{n}^{1} & \cdots & \varphi_{n}^{N} & 0 & 0 \\
\varphi_{n+1}^{1} & \cdots & \varphi_{n+1}^{N} & 0 & 0
\end{array}\right| . \tag{12}
\end{align*}
$$

From (6)-(12), we have

$$
\begin{aligned}
& f_{n}\left(\partial_{x} \partial_{s} f_{n}\right)-\left(\partial_{x} f_{n}\right)\left(\partial_{s} f_{n}\right)-f_{n+1} f_{n-1}+f_{n}^{2} \\
& =g_{n+1}(\operatorname{det} H)\left[\left(\partial_{x} \partial_{x} g_{n+1}\right)(\operatorname{det} H)+\left(\partial_{x} g_{n+1}\right)\left(\partial_{s} \operatorname{det} H\right)+\left(\partial_{s} g_{n+1}\right)\left(\partial_{x} \operatorname{det} H\right)\right. \\
& \left.+g_{n+1}\left(\partial_{x} \partial_{5} \operatorname{det} H\right)\right]-\left[\left(\partial_{x} g_{n+1}\right)(\operatorname{det} H)+g_{n+1}\left(\partial_{x} \operatorname{det} H\right)\right] \\
& \times\left[\left(\partial_{s} g_{n+1}\right)(\operatorname{det} H)+g_{n+1}\left(\partial_{5} \operatorname{det} H\right)\right]-f_{n+1} f_{n-1}+g_{n+1}^{2}(\operatorname{det} H)^{2} \\
& =\left[g_{n+1}\left(\partial_{x} \partial_{5} g_{n+1}\right)-\left(\partial_{x} g_{n+1}\right)\left(\partial_{s} g_{n+1}\right)-g_{n+2} g_{n}+g_{n+1}^{2}\right](\operatorname{det} H)^{2} \\
& +g_{n+2} g_{n}\left(\operatorname{det} H\left|\begin{array}{ccccc}
& & & \bar{\varphi}_{n}^{1} & \bar{\varphi}_{n+1}^{1} \\
& H & & \vdots & \vdots \\
& & & \bar{\varphi}_{n}^{N} & \bar{\varphi}_{n+1}^{N} \\
\varphi_{n}^{1} & \cdots & \varphi_{n}^{N} & 0 & 0 \\
\varphi_{n+1}^{1} & \cdots & \varphi_{n+1}^{N} & 0 & 0
\end{array}\right|\right. \\
& -\left|\begin{array}{ccc}
& & \bar{\varphi}_{n}^{1} \\
H & & \vdots \\
& & \\
\bar{\varphi}_{n}^{N} \\
\varphi_{n+1}^{1} & \cdots & \varphi_{n+1}^{N}
\end{array}\right| \begin{array}{cc}
& 0
\end{array}\left|\begin{array}{cc}
\bar{\varphi}_{n+1}^{1} \\
& \\
\bar{\varphi}_{n+1}^{N} \\
\varphi_{n}^{1} \cdots \varphi_{n}^{N} & 0
\end{array}\right|
\end{aligned}
$$

Equation (13) holds due to Jacobi's formula. Therefore we have proved that f_{n} actually satisfies the bilinear equation (1.1).

If we take $g_{n}=1$, then we get the cylindrical N-soluton solutions of (1.1) [14]

$$
f_{n}=\left(c_{i j}+\sum_{m=-\infty}^{n} \bar{\varphi}_{m}^{i} \varphi_{m}^{j}\right) \quad 1 \leqslant i, j \leqslant N
$$

where the quantities $\varphi_{n}^{\prime}, \bar{\varphi}_{n}^{\prime}(1 \leqslant i, j \leqslant N)$ satisfy

$$
\begin{array}{ll}
\partial_{x} \varphi_{n}^{i}=\varphi_{n+1}^{i} & \partial_{s} \varphi_{n-1}^{i}=-\varphi_{n-1}^{i} \\
\partial_{x} \bar{\varphi}_{n}^{i}=-\bar{\varphi}_{n-1}^{i} & \partial_{s} \bar{\varphi}_{n}^{i}=\bar{\varphi}_{n+1}^{i} .
\end{array}
$$

We can generalise theorem 1 for $N=\infty$.

Theorem 2.

$$
f_{n}=g_{n+1}\left(1+\sum_{m=1}^{x} \varepsilon^{m} \sum_{\substack{i_{1}, i_{2}, \ldots, i_{n}=1 \\ i_{1}<1, \ldots<\ldots<i_{1}, \ldots}}^{x} \bar{g}_{i_{1} i_{2} \ldots i_{m}}\right)
$$

satisfies (1.1), where

$$
\bar{g}_{1_{1}, \ldots, l_{t, m}}=\left|\begin{array}{ccc}
h_{i_{1} i_{1}}^{0}(n) & \cdots & h_{i_{1}, i_{n}}^{0}(n) \\
\vdots & \ddots & \vdots \\
h_{i_{m, 1}, 1}^{0}(n) & \cdots & h_{i_{1, m}, i_{m}}^{0}(n)
\end{array}\right|
$$

and

$$
h_{i j}^{0}(n)=c_{i} \delta_{i j}+\sum_{m=-x}^{n} \frac{\tilde{f}_{m}^{j} \bar{f}_{m+1}^{\prime}}{g_{m} g_{m+1}} .
$$

This result can be proved by Nakamura's method [8].
The author would like to express his sincere thanks to Professor Ben-Yu Guo for continual encouragement.

References

[1] Matsuno Y 1984 Bilinear Transformation Method (New York: Academic)
[2] Freeman N C and Nimmo J J C 1983 Phys. Lett. 95A 1
[3] Nimmo J J C and Freeman N C 1984 J. Phys. A: Math. Gen. 171415
[4] Hirota R 1986 J. Phys. Soc. Japan 552137
[5] Hirota R 1988 J. Phys. Soc. Japan 57436
[6] Matsuno Y 1988 J. Phys. Soc. Japan 571924
[7] Matsuno Y 1989 J. Phys. Soc. Japan 5867
[8] Nakamura A 1988 J. Phys. Soc. Japan 573309
[9] Nakamura A 1989 J. Phys. Soc. Japan 58412
[10] Sachs R L 1988 Physica 30D 1
[11] Yuasa F 1987 J. Phys. Soc. Japan 56423
[12] Liu Q-M 1989 Phys. Lett. 135A 443
[13] Liu Q-M 1989 J. Phys. A: Math. Gen. 22 L255
[14] Nakamura A 1983 J. Phys. Soc. Japan 52380

